One more thing…Intelligenz, die künstliche

One more thing” ist eines der berühmtesten Zitate der Neuzeit und es war an diesem 9.Januar 2007 zu spüren, dass hier etwas Revolutionäres geschah. Das lag zu einem hohen Grad an der charismatischen Person von Steve Jobs, aber es bleibt unbestritten, dass dieser kleine Hochleistungscomputer, den wir alle mit uns herumtragen, diese unsere Welt so stark verändert hat wie vielleicht vorher die Erfindung der Dampfmaschine oder des Automobils.

Bild von Gerd Altmann auf Pixabay

Nicht nur im privaten Sektor, sondern auch und gerade im industriellen und beruflichen Kontext funktioniert (fast) nichts mehr ohne Smartphone. Das führt unter anderem dazu, dass ich sogar zwei von diesen Teilen mit mir herumschleppe. Danke, aber kein Mitleid, das ist ein selbstgewähltes Schicksal.

Doch zurück zu besonderen Daten mit diesem “one more thing”. Die grauen Wintermonate scheinen eine gute Kulisse für diese Momente abzugeben, auch wenn der 26.Februar 2024 in unseren Breiten eher frühlingshaft daherkommt. Die Telekom hat an diesem Tag das erste Smartphone auf dem Mobile World Congress vorgestellt, das komplett ohne Apps auskommt. Und die Süddeutsche Zeitung titelt: “Ein neues Zeitalter“.

Nun kann man die Augenbrauen hochziehen – ausgerechnet die Kupferkabel-Telekom aus Deutschland, dem Entwicklungsland für Breitband-Internetzugang und mehr mobilen Funklöchern als Löcher im Schweizer Käse? Die soll jetzt das nächste “one more thing” haben?

Aber lassen wir diese Polemik mal kurz beiseite, was ist denn dieser “one more thing” Moment hier? Wir sehen ein Smartphone, dass ein extrem cleanes User Interface hat und nicht für jeden Anwendungsfall eine App anbietet. Das ich natursprachliche Aufgaben geben oder Fragen stellen kann und die KI zeigt mir Lösungsmöglichkeiten oder gibt Antworten auf meine Fragen. Was das für die private Massenanwendung bedeutet, diese Analyse überlasse ich lieber Menschen, die das viel besser können als ich.

Was ich mich aber frage und diese Frage treibt mich wirklich um: Was bedeutet das jetzt für ein PLM-System? Oder machen wir es noch ein bisschen größer, für Unternehmenssoftware im industriellen Wertschöpfungsprozess?

Auch dort haben wir einen “Zoo” aus verschiedensten Applikationen, angefangen von CRM über PDM-Systeme und deren Autorensysteme bis hin zu EMS und ERP. Und an die Logistik, QM und HR-Systeme möchte ich da noch gar nicht denken. Jede diese Anwendungen bringt dann noch eine ganze Reihe von Funktionen oder Apps mit und eigene Storages für die jeweiligen Daten. An deren Integration arbeiten wir seitdem in den 1990’er Jahren das Wort CIM das erste mal aufkam und stellen uns so der Herausforderung der zunehmenden Komplexität in den Unternehmensprozessen und -entscheidungen. Als eine beispielhafte Technologie soll der Einsatz von Cloud-Technologien und Microservices-Architekturen genannt werden. Microservices ermöglichen die Entwicklung und Wartung einzelner Funktionsbereiche einer Anwendung unabhängig voneinander, was die Komplexität reduziert und die Wartbarkeit verbessert. Cloud-Plattformen bieten zudem die notwendige Infrastruktur und Dienste, um Anwendungen effizient zu betreiben und zu skalieren.

Diese Ansätze finden sich aber eher im Maschinenraum der Unternehmenssoftware wieder. Was ist da aber für den Passagier an Deck, also den Endanwender drin? Wie können Unternehmensanwendungen diesem Endanwender zukünftig bei der Lösung seiner Herausforderungen helfen?

Bild von OpenClipart-Vectors auf PixabayUnd hier möchte ich auf den “one more thing” Moment der Telekom zurückkommen. Ist der zukünftige Client eines (PLM-)Systems nur noch ein Prompt, dem Fragen gestellt und Anweisungen erteilt werden und die KI macht dann den Rest? Was ist dann überhaupt der Rest? Hier ist eine unvollständige Auflistung:

Automatisierte Datenintegration

Eine KI kann die Identifizierung und Zusammenführung relevanter Daten aus verschiedenen Quellen und Systemen automatisieren. Durch den Einsatz von Machine Learning-Algorithmen können Systeme Muster und Zusammenhänge zwischen Daten aus unterschiedlichen Silos erkennen und diese intelligent verknüpfen. Dies vereinfacht den Integrationsprozess erheblich und ermöglicht so einen konsolidierten Blick auf die Unternehmensdaten. Damit hilft die KI dem Anwender durch den Komplexität der verschiedenen Unternehmensanwendungen und -Systeme.

Intelligente Prozessautomatisierung

Die Automatisierung von Geschäftsprozessen, die Daten aus verschiedenen Systemen benötigen, ist ein weiteren Feld des Einsatzes vom KI. Robotic Process Automation (RPA) in Kombination mit KI ermöglicht es, repetitive Aufgaben, die früher manuelle Dateneingriffe aus verschiedenen Quellen erforderten, zu automatisieren. Dadurch werden Prozesseffizienz gesteigert und Fehler reduziert.

Predictive Analytics und Entscheidungsunterstützung

Durch die Integration und Analyse von Daten aus verschiedenen Silos können KI-Systeme tiefere Einblicke in Geschäftsprozesse bieten und zukünftige Trends vorhersagen. Predictive Analytics ermöglicht es Unternehmen, fundiertere Entscheidungen zu treffen, Risiken zu minimieren und Chancen proaktiv zu nutzen. Kritische Situationen können zeitiger erkannt und darauf aufmerksam gemacht werden.

Verbesserte Datenqualität und -bereinigung

Unzureichende Datenqualität ist eine häufige Herausforderung bei der Arbeit mit Daten aus verschiedenen Silos. KI-gestützte Tools können inkonsistente, unvollständige oder duplizierte Daten automatisch identifizieren und korrigieren. Durch die Bereinigung und Normalisierung der Daten wird deren Nutzbarkeit für Analysen und Entscheidungsprozesse erheblich verbessert.

Diese Aufzählung ist sicher nicht vollständig, aber zeigt wichtige Aspekte aus der PLM-Perspektive auf.

Versuchen wir uns einmal an einem Fazit. “One more thing” kann zu einer radikalen Komplexitätsreduzierung für den (PLM-) Anwender führen. Ein Durchklicken durch Strukturen und Dashboards in unterschiedlichen Apps und Anwendungen ist nicht mehr nötig. Dagegen können einem Prompt natursprachliche Fragen gestellt und Anweisungen gegeben werden. Die KI versteht diese und kann Lösungen vorschlagen oder Antworten geben. Das ist eine revolutionäre Usability.

Des Weiteren verbessert die durch KI ermöglichte Systemintegration die Datenbasis, auf der die KI operiert und steigert damit direkt die Relevanz, Genauigkeit und Nützlichkeit der KI-generierten Antworten. Das sind dann die richtigen Vorschläge und Anworten, die die KI gibt.

 

Ein PLM-Talk – heute mit Ismail Serin, Head of Product Management SAP PLM

Herzlich Willkommen auf meiner virtuellen Blogcouch, Ismail. Nimm bitte Platz und mach es Dir gemütlich. In der PLM-Community ist Dein Name als einer der prägenden Köpfe hinter dem SAP PLM Produktportfolio bekannt. Kannst Du trotzdem bitte ein paar Worte zu Deiner Person und Deinen beruflichen Stationen verlieren?

Herzlichen Dank für die freundliche Einladung auf die virtuelle Blogcouch! Es ist mir eine Freude, hier Platz nehmen und mich über meine Erfahrungen und Einsichten im PLM austauschen zu dürfen.

Mein Name ist Ismail Serin und ich bin seit 2009 bei der SAP tätig. Während meiner Zeit bei SAP habe ich verschiedene Positionen im Bereich Produktentwicklung und -management bekleidet. Seit 2015 bin ich intensiv an der Transformation unseres PLM-Portfolios in die Cloud beteiligt, um unseren Kunden eine zukunftsfähige, skalierbare und flexible Lösung zur Verfügung zu stellen. 

Lass mich hinzufügen, dass ein entscheidender Wendepunkt in meiner Karriere bei SAP die Akquisition von Fedem Technology, einem norwegischen Unternehmen, im Jahr 2015 war. Fedem war auf die Entwicklung von Softwarelösungen im Bereich Strukturanalyse und Simulation spezialisiert. Durch diese Akquisition wurde ich in den PLM-Bereich versetzt und begann, meine Expertise in diesem Gebiet zu vertiefen.

Die Integration von Fedems Technologien und Kompetenzen in das bestehende SAP PLM-Portfolio hat nicht nur dazu beigetragen, unsere Lösungen weiterzuentwickeln und zu verbessern, sondern auch mir persönlich ermöglicht, mein Wissen im Bereich PLM auszubauen und eine wichtige Rolle bei der Gestaltung unserer Produktstrategie zu übernehmen.

Seitdem arbeite ich eng mit Kunden, Partnern und Kollegen zusammen, um die bestmöglichen PLM-Lösungen zu entwickeln und erfolgreich am Markt zu etablieren. Dabei liegt mein Fokus insbesondere auf der Integration neuer Technologien, um Unternehmen dabei zu unterstützen, ihre Produktentwicklungsprozesse zu optimieren und den Herausforderungen der digitalen Transformation erfolgreich zu begegnen.

Ich freue mich darauf, meine Erkenntnisse und Erfahrungen mitzuteilen und spannende Diskussionen rund um das Thema PLM zu führen.

Als Cloud-Befürworter im PLM-Geschäft begleitet Ihr als ein führender Lösungsanbieter Unternehmen auf Ihrem Weg in die Digitalisierung und löst Herausforderungen aus den Wertschöpfungsprozessen. Blicken wir einmal 10 Jahre zurück. Was unterscheiden die heutigen Softwarelösungen von denen der damaligen Zeit?

Wenn wir 10 Jahre zurückblicken, sind die Unterschiede zwischen den damaligen und heutigen Softwarelösungen im PLM-Bereich enorm. Die wichtigsten Veränderungen betreffen die Bereiche Digitalisierung, Vernetzung und Skalierbarkeit.

Digitalisierung

Digitalisierung im PLM hat weitreichende Auswirkungen auf die Art und Weise, wie Unternehmen ihre Produktlebenszyklusdaten verwalten und nutzen. Ein zentrales Konzept, das mit der Digitalisierung einhergeht, ist der Digital Thread. Dieses Konzept spielt eine entscheidende Rolle bei der Verbesserung von Effizienz und Entscheidungsfindung in Unternehmen. Es bezieht sich auf die digitale Verknüpfung und den Informationsfluss zwischen allen Phasen des Produktlebenszyklus – von der Ideenfindung und Konzeption über die Entwicklung, Produktion, Wartung bis hin zur Entsorgung.

  • Konsistenz und Nachverfolgbarkeit: Da alle Informationen und Daten im Digital Thread miteinander verknüpft sind, ist es einfacher, Änderungen und Anpassungen im Produktlebenszyklus nachzuvollziehen. Dies führt zu einer besseren Datenkonsistenz und ermöglicht eine lückenlose Rückverfolgung von Produktänderungen und deren Auswirkungen.
  • Schnellere Markteinführung: Durch die nahtlose Integration und den Informationsfluss im Digital Thread können Unternehmen ihre Produktentwicklung beschleunigen und Produkte schneller auf den Markt bringen. Zeitraubende manuelle Prozesse und Abstimmungen zwischen verschiedenen Abteilungen werden minimiert, was die Effizienz erhöht.
  • Innovation: Durch die Integration von Daten und Informationen aus verschiedenen Bereichen des Produktlebenszyklus kann der Digital Thread dazu beitragen, Verbesserungspotenziale und Innovationen aufzudecken. Unternehmen können auf Basis dieser Erkenntnisse ihre Prozesse und Produkte optimieren und wettbewerbsfähiger werden.

Vernetzung

Bild von Gerd Altmann auf PixabayDie Vernetzung ist ein weiterer wichtiger Aspekt im Zusammenhang mit der Digitalisierung im PLM. Sie bezieht sich auf die Verbindung und Kommunikation zwischen verschiedenen Abteilungen, Prozessen, Systemen und sogar Unternehmen, die an der Entwicklung und Verwaltung eines Produkts beteiligt sind. Die Vernetzung im PLM hat in den letzten Jahren stark zugenommen, insbesondere durch den Einsatz von Cloud-Technologien und modernen Kommunikationslösungen.

  • Verbesserte Zusammenarbeit: Eine stärkere Vernetzung ermöglicht eine bessere Zusammenarbeit zwischen den verschiedenen Akteuren im Produktlebenszyklus. Sie fördert den Informationsaustausch und ermöglicht es Teams und Abteilungen, effizienter zusammenzuarbeiten und ihre Expertise zu bündeln.
  • Integration von Lieferketten und Partnern: Die Vernetzung erlaubt es Unternehmen, ihre Lieferketten und externen Partner effizienter in den PLM-Prozess einzubinden. Dies fördert die Zusammenarbeit und den Informationsaustausch mit Zulieferern, Dienstleistern und Kunden und trägt dazu bei, die gesamte Wertschöpfungskette zu optimieren.
  • Kürzere Entwicklungszyklen: Durch die Vernetzung von Prozessen und Systemen im PLM können Unternehmen ihre Produktentwicklung beschleunigen. Die Kommunikation zwischen den verschiedenen Entwicklungsphasen wird verbessert, was zu einer schnelleren Markteinführung von Produkten führt.

 

Skalierbarkeit

  • Kosteneffizienz: Die Skalierbarkeit durch die Cloud ermöglicht es Unternehmen, ihre IT-Kosten besser zu kontrollieren. Da Ressourcen bei Bedarf hinzugefügt oder reduziert werden können, entfallen teure Investitionen in die eigene IT-Infrastruktur und Wartung. Unternehmen zahlen in der Regel nur für die Ressourcen, die sie tatsächlich nutzen.
  • Schnelle Implementierung und Aktualisierung: Cloud-basierte PLM-Lösungen können in der Regel schneller implementiert und aktualisiert werden als lokal installierte Systeme. Dies ermöglicht es Unternehmen, neue Funktionen und Verbesserungen schneller zu nutzen und ihre PLM-Prozesse kontinuierlich zu optimieren.
  • Globale Verfügbarkeit und Zusammenarbeit: Da Cloud-basierte PLM-Systeme über das Internet zugänglich sind, können Mitarbeiter und Partner von überall auf der Welt auf die Daten und Informationen zugreifen. Dies fördert die Zusammenarbeit und den Informationsaustausch zwischen verschiedenen Standorten und Abteilungen.

Der Blick in die Zukunft ist immer etwas schwierig, aber lass es uns doch einmal versuchen. Welche Dinge werden uns im PLM in den nächsten Jahren weiter massiv beschäftigen?

Künstliche Intelligenz und Process Analytics werden zweifellos eine entscheidende Rolle bei der zukünftigen Entwicklung im PLM in den nächsten 10 Jahren spielen. Diese Technologien haben das Potenzial, die Art und Weise, wie Unternehmen ihre Produktentwicklung und -verwaltung angehen, grundlegend zu verändern und zu verbessern.

KI im PLM: Künstliche Intelligenz kann in verschiedenen Phasen des Produktlebenszyklus eingesetzt werden, um den Entscheidungsprozess zu unterstützen, die Effizienz zu erhöhen und innovative Lösungen zu entwickeln. Einige mögliche Anwendungsbereiche von KI im PLM umfassen:

  • Automatisierung von Routineaufgaben: KI kann dazu beitragen, manuelle und zeitaufwändige Prozesse zu automatisieren, indem sie Muster erkennt und Aufgaben schneller und präziser ausführt als menschliche Mitarbeiter. Dadurch können Unternehmen Ressourcen einsparen und ihre Effizienz steigern.
  • Optimierung von Produktentwicklung und -design: KI kann große Mengen an Daten analysieren und Muster erkennen, um bessere Produktkonzepte und -designs zu entwickeln. Dies kann dazu beitragen, die Produktqualität zu verbessern und die Entwicklungszeit zu verkürzen.
  • Vorhersage von Produktfehlern und Wartungsbedarf: KI kann dazu verwendet werden, potenzielle Produktfehler und Wartungsanforderungen vorherzusagen, indem sie historische Daten und Sensordaten aus dem Feld analysiert. Dies ermöglicht es Unternehmen, proaktiv zu handeln und kostspielige Ausfälle oder Rückrufe zu vermeiden.

Process Analytics im PLM: Process Analytics bezieht sich auf die Analyse und Optimierung von Geschäftsprozessen. Durch den Einsatz von Process Analytics können Unternehmen:

  • Transparenz und Kontrolle über ihre Prozesse gewinnen: Process Analytics ermöglicht es Unternehmen, ihre PLM-Prozesse zu visualisieren und zu analysieren, um Engpässe, Ineffizienzen und Verbesserungspotenziale zu identifizieren.
  • Datenbasierte Entscheidungen treffen: Durch die Analyse von Prozessdaten können Unternehmen fundierte Entscheidungen treffen, die auf Fakten und Erkenntnissen basieren, anstatt auf Intuition oder Erfahrung.
  • Prozessleistung kontinuierlich verbessern: Process Analytics kann dazu beitragen, die Leistung von PLM-Prozessen kontinuierlich zu überwachen und zu optimieren, um die Effizienz, Qualität und Geschwindigkeit der Produktentwicklung und -verwaltung zu steigern.

Und wenn wir auf die Wertschöpfungsprozesse blicken, wo siehst Du die größten Unterschiede und Entwicklungen in den vergangenen Jahren? Was machen Unternehmen heute in Ihren Geschäftsprozessen anders und besser?

In den vergangenen Jahren haben sich die Wertschöpfungsprozesse in Unternehmen aufgrund technologischer Fortschritte und sich verändernder Marktbedingungen erheblich weiterentwickelt. Angesichts des schnellen Wandels in vielen Branchen haben Unternehmen begonnen, agilere und flexiblere Entwicklungsprozesse einzuführen. Sie sind in der Lage, schnell auf Marktveränderungen oder Kundenanforderungen zu reagieren und ihre Ressourcen effizienter einzusetzen. Viele Unternehmen setzen verstärkt auf digitale Technologien, um ihre Prozesse zu automatisieren und effizienter zu gestalten. Dadurch können sie ihre Produktivität steigern, Kosten reduzieren und die Qualität ihrer Produkte zu verbessern. Darüber hinaus gibt es einen wachsenden Fokus auf Nachhaltigkeit und Kreislaufwirtschaft in der Wertschöpfung. Unternehmen integrieren ökologische und soziale Aspekte in ihre Prozesse, um Ressourceneffizienz zu verbessern, Abfall zu reduzieren und ihren ökologischen Fußabdruck zu minimieren.

Als weltweit führender Anbieter für Unternehmenssoftware seid ihr untrennbarer Teil dieses Transformationsprozesses in den Unternehmen. Welche Herausforderungen bewegen Unternehmen in diesen Zeiten?

Einige der wichtigsten Herausforderungen, denen Unternehmen derzeit gegenüberstehen, sind:

  • Nachhaltigkeit und soziale Verantwortung: Unternehmen sind zunehmend gefordert, ihre soziale und ökologische Verantwortung wahrzunehmen und nachhaltige Praktiken in ihre Geschäftsprozesse zu integrieren. Dies erfordert eine Neuausrichtung der Wertschöpfungsketten, Investitionen in umweltfreundliche Technologien und die Einbindung von Stakeholdern.
  • Anpassung an die digitale Transformation: Unternehmen müssen sich an die sich schnell entwickelnde digitale Landschaft anpassen und digitale Technologien in ihre Geschäftsprozesse integrieren. Dies erfordert eine kontinuierliche Weiterbildung der Mitarbeiter, die Anpassung der Organisationsstrukturen und die Implementierung neuer Technologien und Systeme.
  • Datensicherheit und Datenschutz: Mit der zunehmenden Menge an verfügbaren Daten und der wachsenden Vernetzung von Systemen steigt auch das Risiko von Cyberangriffen und Datenschutzverletzungen. Unternehmen müssen sich darauf konzentrieren, ihre Daten und Systeme sicher zu halten und die Einhaltung von Datenschutzbestimmungen sicherzustellen.
  • Talentmanagement und Fachkräftemangel: Die digitale Transformation erfordert spezialisierte Kenntnisse und Fähigkeiten, die möglicherweise in vielen Unternehmen fehlen. Unternehmen müssen Strategien entwickeln, um qualifizierte Mitarbeiter zu gewinnen, zu halten und weiterzubilden, um den Bedarf an digitalen Kompetenzen zu decken.
  • Wettbewerbsdruck und Globalisierung: Unternehmen stehen unter immer größerem Druck, ihre Produkte und Dienstleistungen kontinuierlich zu verbessern und sich von der Konkurrenz abzuheben. Die Globalisierung eröffnet neue Märkte, erhöht aber auch den Wettbewerb und stellt Unternehmen vor zusätzliche Herausforderungen.

Als Teil des Transformationsprozesses in Unternehmen ist es unsere Aufgabe als führender Anbieter von Unternehmenssoftware, innovative Lösungen bereitzustellen, die Unternehmen dabei unterstützen, diese Herausforderungen erfolgreich zu bewältigen. Dazu zählen die Bereitstellung von Softwarelösungen zur Prozessoptimierung, Sicherheit, Zusammenarbeit und Datenanalyse sowie die Förderung von Wissenstransfer und Best Practices.

Und Herausforderungen verlangen natürlich nach Lösungen und dabei spielt gerade PLM eine herausragende Rolle. Welche PLM-Lösungen bietet Ihr denn an und wie hilft eure  Software Industrieunternehmen durch diese bewegten Zeiten?

Als Anbieter von PLM-Lösungen bieten wir eine Reihe von Cloud Services an, die speziell entwickelt wurden, um Industrieunternehmen sowohl in der Diskreten- als auch in der Prozessindustrie bei der Bewältigung der Herausforderungen der digitalen Transformation zu unterstützen. Unsere PLM-Lösungen umfassen folgende Aspekte:

  • Zentrale Datenverwaltung: Unsere PLM-Software ermöglicht es Unternehmen, sämtliche Produktinformationen zentral zu verwalten und auf einer einheitlichen Plattform bereitzustellen. Dies schafft eine Single Source of Truth für alle Beteiligten, erleichtert den Informationsaustausch und verbessert die Zusammenarbeit innerhalb des Unternehmens sowie mit externen Partnern.
  • Prozessautomatisierung und -optimierung: Unsere Lösungen unterstützen Unternehmen bei der Automatisierung und Optimierung ihrer Produktentwicklungsprozesse, um Effizienz und Produktivität zu steigern. Durch die geplante integration von KI und maschinellem Lernen können komplexe Aufgaben schneller und genauer erledigt werden, was zu einer beschleunigten Markteinführung und Kosteneinsparungen führt.
  • Nachhaltigkeits- und Kreislaufwirtschaftsanalyse: Unsere Software bietet Funktionen zur Bewertung der Umweltauswirkungen von Produkten und Prozessen sowie zur Identifizierung von Möglichkeiten zur Verbesserung der Ressourceneffizienz und Reduzierung von Abfällen.
  • Projekt- und Ressourcenmanagement: Unsere L√∂sungen bieten umfassende Funktionen für das Projekt- und Ressourcenmanagement, die es Unternehmen ermöglichen, ihre Projekte effizient zu planen, steuern und überwachen. Dies hilft dabei, Engpässe und Risiken frühzeitig zu erkennen und sicherzustellen, dass Ressourcen optimal eingesetzt werden.
  • Integration von CAD Systemen: Unsere PLM-Software ermöglicht die nahtlose Integration von CAD Systemen, um den gesamten Entwicklungsprozess von der Konzeption bis zur Fertigung zu unterstützen. Dies fördert die Zusammenarbeit zwischen den verschiedenen Abteilungen und hilft, Entwicklungszeit und -kosten zu reduzieren.
  • Konfigurations- und Änderungsmanagement: Mit unserer PLM-Software können Unternehmen den gesamten Änderungsprozess von Produktkonfigurationen verwalten und nachverfolgen. Dies stellt sicher, dass alle Beteiligten √ºber die aktuellsten Informationen verfolgen und Änderungen effizient und nachvollziehbar umgesetzt werden.
  • Compliance und Qualitätsmanagement: Unsere PLM-Lösungen unterstützen Unternehmen bei der Einhaltung von Industrienormen, gesetzlichen Vorschriften und Qualitätsstandards. Sie ermöglichen eine systematische Erfassung und Überwachung von Qualitäts- und Compliance-Anforderungen während des gesamten Produktlebenszyklus.

Durch die Bereitstellung dieser umfassenden PLM-Lösungen unterstützen wir Industrieunternehmen dabei, die Herausforderungen der digitalen Transformation erfolgreich zu meistern. Unsere Software hilft ihnen, ihre Prozesse zu optimieren, die Zusammenarbeit zu fördern, die Markteinführung zu beschleunigen

Ich danke Dir sehr für dieses Gespräch und wünsche für die Weiterentwicklung des Produktportfolios alles erdenklich Gute und viel Erfolg.

Excuse me, wir haben 2023! Nachhaltigkeit, Kreislaufwirtschaft und PLM

 

Nachhaltigkeit (Sustainability) und eine Kreislaufwirtschaft sind viel diskutierte Ansätze in der Industrie zur Reduzierung von Umweltbelastungen und zur Verbesserung des Einsatzes von Rohstoffen und Ressourcen. Die Integration nachhaltiger und zirkulärer Praktiken in die Industrie ist eine der größten Herausforderungen in naher Zukunft im Kampf gegen die Klimakrise. Wie kann PLM zur Lösung dieser Herausforderung beitragen?

Product Lifecycle Management (PLM) eine Strategie und ein Methode den gesamten Lebenszyklus eines Produkts zu verwalten, von seinem Design und seiner Entwicklung bis zu seiner Herstellung, Verwendung und Entsorgung. Eine Kreislaufwirtschaft ist ein Wirtschaftssystem, das darauf ausgelegt ist, regenerativ und wiederherstellend zu sein, indem Abfall reduziert und Ressourcen optimal genutzt werden.

Product Lifecycle Management (PLM) kann das Erreichen von Zielen zur Verbesserung der Sustainability auf vielfältige Weise unterstützen. Eine Möglichkeit besteht darin, die Bewertung der Umweltauswirkungen des Rohstoffbedarfs, der Herstellungsprozesse, der Logistik, der Nutzung des Produktes und der Entsorgung vorzunehmen und Bereiche zu identifizieren, in denen diese Auswirkungen reduziert werden können.

Darüber hinaus ist PLM ein Wegbereiter für den Übergang zu einer Kreislaufwirtschaft, indem es Unternehmen hilft, Produkte zu entwickeln, die einfacher wiederverwendet, repariert und recycelt werden können.

Dies kann die Verwendung von Materialien umfassen, die langlebiger, recycelbarer oder biologisch abbaubar sind, sowie die Entwicklung von Produkten, die modular sind und sich leicht zerlegen und wieder zusammenbauen lassen. So kann die Nutzung von Ressourcen und die Minimierung von Abfall während des gesamten Produktlebenszyklus optimiert werden. Dies kann durch den Einsatz von (PLM) Software erreicht werden, um den Ressourcenverbrauch zu verfolgen und zu analysieren und dabei Möglichkeiten zur Effizienzsteigerung zu identifizieren. PLM-Tools können weitergehend unterstützen, die Umweltauswirkungen verschiedener Designoptionen zu analysieren und die nachhaltigste Option auszuwählen. Auf diese Weise können Unternehmen die Nutzungsdauer ihrer Produkte verlängern und den Bedarf an Rohstoffen reduzieren.

PLM kann Unternehmen auch dabei helfen, die Verwendung und Entsorgung ihrer Produkte zu verfolgen, um Verbesserungen bei der Wiederverwertung und beim Recycling zu erreichen. Dabei ist das Sammeln von Daten über die Nutzung der Produkte zu Identifizierung von Verschleißmustern denkbar. Die gewonnenen Erkenntnisse fließen dann Produktdesign ein und das sorgt für eine Reduzierung der Umweltauswirkungen durch ein geschlossenes System zur Maximierung der Ressourceneffizienz.

Ein konkretes Beispiel für diese Analysen ist die Berechnung des CO2-Fußabdrucks in einer vollständigen End2End-Betrachtung.

Der CO2-Fußabdruck eines Produkts bezieht sich auf die Gesamtmenge an CO2-Emissionen, die während seines gesamten Lebenszyklus erzeugt werden, von der Rohstoffgewinnung und -verarbeitung über die Herstellung, den Transport, die Verwendung und die Entsorgung. Der CO2-Fußabdruck eines Produkts kann durch viele Faktoren beeinflusst werden, darunter die verwendeten Materialien, die Energieeffizienz des Produktionsprozesses und die verwendeten Transport- und Vertriebsmethoden.

Für das PLM sollte die Identifizierung von Potenzialen zur Reduzierung des CO2-Fußabdruck ein Heimspiel sein. Mögliche Anwendungsfälle sind die Optimierung des Designs eines Produkts, um weniger Materialien oder energieeffizientere Komponenten zu verwenden, oder die Auswahl von Lieferanten und Transportoptionen mit geringeren CO2-Emissionen. Durch sorgfältiges Management des Lebenszyklus eines Produkts ist es möglich, seine Umweltauswirkungen zu reduzieren und zu einer nachhaltigeren Zukunft beizutragen.

Um den Treibhausgas-Fußabdruck (THG) innerhalb einer Lieferkette zu berechnen, können Sie einen Lebenszyklusanalyse-Ansatz (LCA) verwenden. Dabei werden die THG-Emissionen bewertet, die mit allen Phasen des Lebenszyklus eines Produkts verbunden sind, von der Rohstoffgewinnung über die Produktion, den Transport, die Nutzung bis hin zur Entsorgung.

Zunächst müssen die Daten zu den Treibhausgasemissionen über die gesamte Lieferkette gesammelt werden. Dies kann Emissionen aus Energieverbrauch, Transport und anderen Prozessen umfassen, die Teil der Lieferkette sind. Dabei müssen auch auch indirekte Emissionen, z. B. die aus der Stromerzeugung, die in der Lieferkette verwendet wird, berücksichtigt werden. Alle diese Information und Daten aus diesen unterschiedlichen Quellen können im PLM-Datenmodell gesammelt werden. Integrationsszenarien sind hier der Schlüssel dazu.

Sobald diese Daten gesammelt wurden, kommen Tools wie das GHG Protocol oder der ISO 14044-Standard zur Anwendung. Diese Methoden bieten eine standardisierte Methodik zur Berechnung von Treibhausgasemissionen und ermöglichen so den Vergleich des Treibhausgas-Fußabdruck verschiedener Produkte und/oder Lieferketten. Aus PLM-Sicht bedarf es einer Integration dieser Logiken und Standards in das PLM-Datenmodell, ähnlich der bereits vielfach und seit langem bestehenden Integration zu anderen Autorensystemen oder anderer Industrienormen wie RoHS oder REACH..

Es ist wichtig zu beachten, dass der Treibhausgas-Fußabdruck einer Lieferkette je nach den jeweiligen Produkten und Prozessen stark variieren kann. Daher ist es wichtig, alle relevanten Faktoren bei der Berechnung des THG-Fußabdrucks einer Lieferkette sorgfältig zu berücksichtigen. Und wir sprechen von einem Merkmal des Produkts – und wo könnte man diese Informationen besser speichern als im Datenmodell im PLM-System?

Insgesamt muss PLM eine Schlüsselrolle dabei spielen, Unternehmen dabei zu helfen, die Umweltauswirkungen ihrer Produkte zu managen und zur Nachhaltigkeit der Branche beizutragen. PLM ist das Betriebssystem dafür.

Die Absicherung von PLM-Systemauswahlen mit Proof of Concepts

 

Die Entscheidung für ein PLM-System ist der Auswahl eines neuen Fahrzeugs für die Familie gar nicht so unähnlich. Die Eltern haben ein paar bestimmte Hersteller im Blick und finden diese oder jene sympathisch. Im Unternehmen werden von einem Projektteam PLM Systemhersteller recherchiert und eine Liste mit potenziellen Systemen erstellt.

Als Nächstes tagt derFamilienrat und es werden Kriterien (Preis, Lieferzeit, Design, Antriebskonzepte, …) definiert, nach denen die Auswahl von Fahrzeugen eingeschränkt wird. Analog dazu bekommen die PLM Hersteller einen Fragebogen und werden gebeten, diesen zu beantworten. Die Antworten werden ausgewertet und drei bis fünf vielversprechende Anbieter selektiert.

Beim Kauf eines Auto vereinbart man jetzt Probefahrten, bei der Auswahl eines PLM-Systems bittet man die Hersteller zur Vorstellung und Präsentation Ihrer Lösungen. Für diese Präsentationen werden Vorgaben gemacht, die sich aus den Hauptprozessen des auswählenden Unternehmens ergeben. Sehr gut geschulte PLM-Experten zeigen dann ihre Lösungen zu Ihren Anforderungen. Die Zuhörerschaft setzt sich aus den zukünftigen Anwendern zusammen, verfolgt diese Demonstrationen und gibt ihre Bewertungen auf Basis der gemachten Eindrucke ab. Die einzelnen Bewertungen werden statistisch ausgewertet und das führt zu einem favorisierten PLM-System.

Überträgt man dieses Vorgehen auf den Kauf der neuen Familienkutsche, sitzen bei der Probefahrt alle auf der Rückbank und der Fahrer ist Sebastian Vettel. Gesucht wird ein neuer Familienkombi für den Transport der Kinder zum Reitunterricht und zum Fussballtraining sowie für die Wege zum Baumarkt.

Aber Sebastian Vettel sitzt vorn am Steuer eines Cabrios und erzählt schöne Geschichten aus dem Rennfahrerleben. Mit ihm als Fahrer fühlt sich der Kofferraum des Cabrios auch gar nicht mehr so klein an. Und die Kinder sollen eh besser das Fahrrad nehmen.

Übertragen wir dieseFoto von Alex Andrews: https://www.pexels.com/de-de/foto/mann-der-grunen-helm-tragt-der-go-kart-reitet-821723/s zugegebenermaßen überspitzte Beispiel in die Wirklichkeit einer PLM-Systemauswahl, dann fährt ein Profi das PLM-Fahrzeug in der Benchmarkpräsentation. Und das ist zu diesem Zeitpunkt auch gar nicht so schlecht, da man selbst noch ein klein wenig überfordert bei der Steuerung eines recht komplexen PLM-Wagens ist.

Aber der PLM-Profi hat sich auf diese Probefahrt sehr gut vorbereitet, kann Schlaglöcher sehr gezielt umfahren und steuert sicher nicht mit einem Sportwagen auf einen Feldweg zur Demonstration der Offroad-Qualitäten.

Was heisst das jetzt aber für Ihre Systemauswahl? Das PLM-System ist neben der nicht unerheblichen kommerziellen Dimension eine der wichtigsten Entscheidungen für das Betriebssystem Ihres Unternehmens. Im diesem System laufen Ihre Produktdaten über den gesamten Lebenszyklus zusammen. Dichter dran an der Wertschöpfung ist kaum eine andere Unternehmenssoftware.

Diese zentrale Rolle im Unternehmen macht die Entscheidung für die PLM-Lösung so wichtig. Einmal getroffen kann diese Entscheidung nur mit großem Aufwand revidiert werden. Zu groß ist die Einbindung in der wertschöpfenden und steuernden Unternehmensprozesse.

Vor diesem Hintergrund bietet eine Probefahrt auf der Rückbank noch keine ausreichenden Erkenntnisse, um eine fundierte Systementscheidung zu treffen. Doch welche Aktivitäten schließen die noch offenen Lücken für Ihre Entscheidung? Hier sind einige Gedankenanstösse:

  • Sie müssen selbst fahren, d.h. sie bedienen das PLM System und nicht eine geschulte Fachkraft des Herstellers.
  • Sie erfahren selbst die Bequemlichkeit des Fahrersitzens und der Armaturen, d.h. ihre Maßstäbe und Erfahrungen zählen. Ist das PLM-System aus ihrem Blickwinkel benutzerfreundlich und logisch aufgebaut? Werden Informationen und Funktionen verständlich angezeigt?
  • Sie müssen den Weg ihrer Probefahrt selbst bestimmen können. Ihre Prozesse und Hauptanwendungsfälle müssen betrachtet werden.
  • Sie verlassen sich nicht auf die Verbrauchsangaben im Prospekt, sondern bewerten konkret die operativen Kosten des Systems auf Basis Ihrer Nutzung.
  • Sie fahren das Automobil mal im Linksverkehr. So bekommen sie einen Blick darauf, wie das System sich in ihren Niederlassungen in Asien oder anderen Standorten anfühlt.
  • Sie schauen intensiv unter die Motorhaube, ob sich dort ein hochgezüchteter Rennmotor verbirgt oder ein genügsamer, aber veralteter Dieselmotor oder ein wartungsfreier Elektroantrieb. Die Architektur des PLM System und die dafür verwendete Technologie bestimmt maßgeblichst den Aufwand für den kontinuierlichen Betrieb ihres PLM System. Im diesem Blogartikel “Die Out-of-the-box Lüge in PLM-Systemauswahlen” erfahren sie mehr dazu.
  • Sie testen die Größe des Kofferraums und des Fruncs mit Ihrem Reisegepäck, d.h. Ihre Stücklisten, Ihre CAD Modell und ihre Dokumente sind das Maß der Dinge.
  • Sie fahren auch mit einen Wohnwagen an der Anhängerkupplung und einem Kajak auf dem Dachgepäckträger. Wie werden Daten an ihr ERP System (der Wohnanhänger) übertragen und wie sind Autorensysteme (CAD, …) integriert?
  • Sie fahren in die Werkstatt und lassen einen Service machen und die Sitze neu beziehen. Wie gut ist der Support und wie versteht er sie? Passt das Vorgehensmodell des Implementierungspartners zu ihnen? Kommen sie auf menschlicher Ebene miteinander klar?

Es bleiben doch noch viele Fragen offen nach so einer Probefahrt nur auf dem Rücksitz. Für das Erleben und den Erkenntnisgewinn des Selber-Fahrens hat sich in PLM-Systemauswahlen die Methode des “Proof of Concept (PoC)” bewährt. Kurz gesagt wird in einem PoC eine Systemimplementierung in einem definierten zeitlichen Rahmen mit einem Subset von Anwendungsfällen simuliert. Diese Methode ermöglicht in großen Teilen das Beantworten der oben aufgeworfenen Fragen und reduziert so das Risiko einer falschen Systemauswahl erheblich. Ein PoC findet immer nach den Vorstellungen und Präsentationen der Systemhersteller statt und kann in Abhängigkeit des Ausgangs dieser Termine zwei Zielrichtungen haben:

Es gibt einen eindeutigen Gewinner nach den Benchmark-Präsentationen

Der PoC dient dann zur Absicherung der gezeigten Erkenntnisse aus den Probefahrten mit Herrn Vettel. So können Überraschungen in der späteren Implementierung oder im Betrieb des PLM-Systems vermieden werden und gleichzeitig lernen sich der Implementierungspartner und ihr Unternehmen besser kennen. Das beschleunigt eine spätere Implementierung ungemein. Sollte der PoC trotz aller Erwartungen nicht gut laufen oder sogar scheitern, haben Sie hier immer noch die Möglichkeit, ohne heftige Auswirkungen auf einen anderen Systemhersteller umzuschwenken.

Es gibt keinen klaren Gewinner nach den Benchmark-Präsentationen

Ein PoC ist kostet zeitlichen und personellen Aufwand und kann daher nicht mit allen Systemherstellern durchgeführt werden, die zu den Präsentationen eingeladen wurden. Sinnvollerweise reduziert man die Shortlist auf zwei oder maximal drei Teilnehmer am PoC. Da so ein PoC auch erhebliche Ressourcen bindet, ist die sequentielle Abfolge des PoCs eine Überlegung wert. Sollte der PoC des ersten PLM-Systems bereits zu hervorragenden Ergebnissen führen, kann über die Absage des zweiten und gegebenenfalls dritten PoC in Erwägung gezogen werden.

Auf der anderen Seite stachelt so eine Wettbewerbssituation bei einer parallelen Durchführung des PoCs auch an und zeigt dann im Ergebnis ein naturgemäß ein vollständigeres Bild aller beteiligten Hersteller. Aufwand gegen Nutzen gilt es sinnvoll abzuwägen.

Wie aber läuft so ein PoC jetzt konkret ab?

1. Die Erarbeitung des PoC-Szenarios

So ein PoC benötigt einen gewissen Mut zur Lücke, da aufgrund der zeitlichen und personellen Beschränkung nicht monatelang implementiert werden kann. Die Beantwortung der folgenden Fragen hilft bei der Definition eines geeigneten PoC-Szenarios.

  • Wo liegt der größte Hebel für das zukünftige PLM-System in ihrem Unternehmen? In welchem (Teil-)Prozess erwarten sie die größten positiven Effekte durch ein PLM-System?
  • In welchem Bereich oder in welchem (Teil-)Prozess liegt das größte Risiko des Scheiterns? Wo liegen die absoluten Knackpunkte der gesamtem PLM Systemeinführung, was muss unbedingt funktionieren? Gerade dem PLM-Projekt gegenüber kritisch eingestellte Bereiche oder Anwender können wertvolles Impulse geben.
  • Mit welchen anderen IT-Systemen (ERP, CAD, …) muss das zukünftige PLM System Daten austauschen? Sind diese Schnittstellen kritisch für Ihre PLM Mission? Falls ja, gehören die in den PoC.
  • Welche Anwendungsfälle sind sehr spezifisch für Ihr Unternehmen? Suchen Sie gezielt nach Komplexität in Ihren Anforderungen, um den Systemhersteller zu fordern und somit eine Aussagekraft für die wirkliche Leistungsfähigkeit zu erlangen. Standard können alle, das ist kein Selektionskriterium.

Das Schneiden eine passenden PoC-Szenarios als Kompromiss zwischen Aufwand und der Erfüllung der genannten Kriterien ist nicht ganz einfach. Der Ruf nach externer Hilfe ist für diesen Schritt eine Überlegung wert. Mit der Qualität des PoC-Szenarios steht und fällt die Qualität und die Aussagekraft der Ergebnisse. Zu einfache PoC Szenarien verringern den Erkenntnisgewinn und zu aufwändige sind im Rahmen eines PoCs nicht abbildbar. Externe Berater mit Erfahrungen in der Implementierung und im Betrieb von PLM-Systemen als auch im Umgang mit PLM Systemherstellern können wertvolle Hinweise geben für den richtigen Schnitt des PoCs.

Die Beschreibung des PoC-Szenarios muss so konkret als möglich erfolgen. Hier haben sich Methoden wie User Stories mit Akzeptanzkriterien bewährt. Neben diesen funktionalen Beschreibungen müssen auch die dazugehörige Daten (CAD-Modelle, Stücklisten, Dokumente, Spezifikationen, …) erzeugt werden und diese müssen so dicht als möglich an der täglichen Realität der Anwender sein.

2. Die Implementierung des PoCs

Im folgenden werden unterschiedliche Ansätze für die Implementierungsphase aufgezeigt.

Die off-site Variante

Jeder Systemhersteller bekommt die Anforderungen und Testdaten zugestellt und hat dann einen klar definierten Zeitraum, diese zu implementieren. Wie viele Ressourcen und welchen Aufwand er für diesen PoC allokiert, bleibt ihn überlassen und ist für das PoC-Team nicht sichtbar. Um eine spätere Implementierung zu simulieren, sollte es regelmäßige Abstimmungstermine zwischen dem PLM-Systemhersteller und dem PoC-Team geben. Diese Termine geben Hinweise hinsichtlich der fachlichen Expertise und der Kommunikation im Projekt. Spricht man eine gemeinsame Sprache? Passt es menschlich zusammen? Wie engagiert ist der Systemhersteller bei diesem PoC?

Der Vorteil dieser Variante liegt im überschaubaren Betreuungsaufwand für das PoC-Team. Bis auf die Teilnahme an den regelmäßigen Abstimmungsterminen fällt hier kaum Aufwand an.

Nachteilig ist der fehlende Einblick in die Anzahl der genutzten Ressourcen und den Implementierungsaufwand. Hat das ein Experte an einem Nachmittag schnell zusammenkonfiguriert oder war dafür ein ganzen Entwicklerteam über mehrere Wochen beschäftigt? Diese Aussage kann nicht getroffen werden und das führt zu einer unsicheren Beurteilung hinsichtliches dieses Kostentreibers für ein späteres Implementierungsprojekt.

Die on-site Variante

Der Implementierungspartner wird eingeladen und bekommt das PoC Szenario und die Daten in den Räumlichkeiten des Unternehmens übermittelt. Die Berater und Entwickler setzen die Anforderungen des PoC dann on-site um und haben dafür wenige Tage bis eine Woche Zeit. Das PoC Team ist integraler Bestandteil des Implementierungsteams und tauscht sich ständig aus. Im besten Fall sitzen alle im gleichen Raum. So ist das PoC-Team live dabei, wenn die Anforderungen umgesetzt werden.

Die Vorteile dieser Variante liegen im deutlich höheren Erkenntnisgewinn zur Leistungsfähigkeit des Implementierungsteam als auch der Technologie/Architektur des Systems. Es ist nachvollziehbar, welcher Aufwand hinter der Implementierung steckt und somit können die dafür entstehenden Kosten genauer kalkuliert und hochgerechnet werden. Auch die menschlichen Faktoren der Zusammenarbeit werden in dieser Variante deutlich besser getestet.

Nachteile sind im Aufwand für diese Variante zu finden. Der Betreuungsaufwand für das PoC-Team ist deutlich höher. Zusätzlich müssen entsprechende Räumlichkeiten und Infrastruktur zur Verfügung stehen.

Die on-site Variante extended

Nicht alle Unternehmen möchten sich an einen externen Partner binden, sondern planen den Aufbau eines eigenen Implementierungsteams. In diesem Fall kann die On-site Variante anstelle des externen Partners auch mit diesen internen Ressourcen gefahren werden. Der Erkenntnisgewinn ist hier nochmal höher gegenüber der zweiten Variante, da Implementierer und Anforderer aus dem gleichen Unternehmen kommen. Als Nachteil ist zu nennen, dass das interne Implementierungsteam erst ausgebildet werden muss, um die Anforderungen des PoC im Zielsystem umzusetzen zu können. Dabei sind PLM-Systeme, die auf Standardtechnologien setzen, im Vorteil. Hier ist weniger Trainingsaufwand notwendig, was auch ein wichtiger Erkenntnisgewinn des PoC ist.

3. Die Vorstellung des PoCs

Welche Implementierungsvariante auch gewählt wurde, am Ende steht immer die Präsentation der PoC-Ergebnisse durch das Implementierungsteam. Das Ziel dieser Vorstellung ist aber nicht nur die Vorführung der Ergebnisse. Es geht vielmehr darum, das PoC Team in der Anwendung des PLM-Systems ausreichend zu schulen. Hinsichtlich der Infrastruktur für diese und die nächste PoC Phase sollte sich an der Unternehmens-IT-Strategie orientiert werden.

Bei einem Betrieb des PLM-Systems auf eigener Hardware sollte die PoC-Installation in diese unternehmenseigene Infrastruktur erfolgen. Welche Stolpersteine hier drohen können, zeigt dieser Artikel “Es wird technisch – Der Betrieb ihres PLM-Ökosystems
Wird eher ein Auslagern des PLM-Systems in die Cloud (SaaS o.ä.) angestrebt, so ist diese Art der Installation vorzuziehen.

4. Testen und Bewerten des PoC

Der PLM-Systemhersteller ermöglicht nach der PoC Präsentation dem PoC-Team einen mehrwöchigen Testzeitraum. Hier fährt jetzt also nicht mehr Sebastian Vettel, sondern jeder Anwender selbst. Das zukünftige System kann so auf Herz und Nieren geprüft werden. Mit diesem ausgiebigen Testzeitraum einhergehen wird eine ansteigende Lernkurve der zukünftigen Anwender des PLM Systems. Dieser Effekt ist nicht zu unterschätzen, da hier die Grundlage für einen effektiven Start des nachfolgenden Implementierungsprojektes gelegt wird.

Aber was ist jetzt nach dem PoC besser geworden im Vergleich zu dem Stand nach den Benchmarkpräsentationen?

  • Sie sind selbst gefahren und haben das PLM System selbst bedient.
  • Sie haben Bequemlichkeit des Fahrersitzes selbst getestet, d.h. ihre Maßstäbe und ihr persönliches Empfinden in der Anwendung der Software sind das Maß der Dinge.
  • Sie haben die Strecke selbst bestimmt. Ihre wichtigsten Prozesse und Anwendungsfälle wurden betrachtet.
  • Sie haben Erkenntnisse gewonnen über die tatsächlichen Verbrauch (die operativen Kosten) ihres PLM-Systems.
  • Falls notwendig, haben sie auch andere Standorte in ihren PoC integriert. Der Linksverkehr war ein Abenteuer, aber es hat sich gelohnt.
  • Sie haben definitiv unter die Motorhaube des PLM-System geschaut. Sie verstehen die Architektur und die zugrundeliegenden Technologien des PLM-Systems und können Auswirkungen besser beurteilen und abschätzen.
  • Der Kofferraum Ihres PLM-Systems wurde mit Ihrem Reisegepäck (ihren Daten) getestet.
  • Der Austausch von Daten und die Integration von Autorensystemen wurden praktisch getestet. Das PLM-Automobil war mit dem ERP-Wohnanhänger im Slalomparcours. War das eine wilde Sause!
  • Sie waren in der Werkstatt und haben ausgiebig mit dem Werkstattmeister und den Mechanikern zusammengearbeitet. Die haben auch den kaputten Wohnanhänger wieder hinbekommen.

Mit diesen Erkenntnissen kann jetzt eine deutlich besser abgesicherte PLM Systemauswahl getroffen werden. Sicher, so ein PoC kostet einen nicht unerheblichen Aufwand. Aber das Risiko einer Fehlentscheidung beim Betriebssystem Ihres Unternehmensblutkreislaufes wird so deutlich minimiert. Eine spätere Korrektur wäre deutlich teurer und aufwändiger.

Und ein Effekt wird auch oft vergessen. Das PoC-Team hat eine erhebliche Lernkurve genommen, versteht PLM als Managementstrategie und das PLM-System deutlich besser. Und startet mit diesen Voraussetzungen deutlich effektiver in das Implementierungsprojekt. Und für das wünsche ich ihnen maximalen Erfolg.

PLM und demographische Diversität – wie passt das zusammen?

 

Vor einigen Tagen wurde mir eine Veröffentlichung in meine Linkedin-Timeline gespült, dessen Titel meine Aufmerksamkeit erregte: “Organizational Demographic Faultlines: Their Impact on Collective Organizational Identification, Firm Performance, and Firm Innovation“. Ulrich Leicht-Deobald (Universität St. Gallen), Hendrik Huettermann (Bundeswehruniversität München), Heike Bruch (Universität St. Gallen) und Barbara S. Lawrence (University of California, Los Angeles) veröffentlichten dieses Paper im “Journal of Management Studies” im Dezember 2021.

Burosituation mit diversen Menschen

Foto von fauxels via Pexels

In dieser Studie wurde der Zusammenhang zwischen Gräben innerhalb von Unternehmensorganisationen und der Innovations- und Leistungsfähigkeit untersucht. Ok, der Abbau von Datensilos ist die Basis des Business Cases fast aller PLM Projekte und somit keine wirkliche Sensation.

Neu in dieser Studie war aber der Blickwinkel, unter dem das betrachtet wurde. Die Protagonistinnen und Protagonisten schauen gezielt auf die demographischen Ursachen der Ausbildung solcher Trenngräben. Menschen mit ähnlichen Merkmalen (Geschlecht, Alter, soziale und/oder regionale Herkunft, …) bilden keine Netzwerke über die gesamte Organisation, sondern arbeiten so mehr oder minder unter sich zusammen.

Die Studie führte zu einem klaren Ergebnis: Diese demographischen Silos wirken sich klar und nachweisbar negativ auf die Innovations- und Leistungsfähigkeit von Unternehmen aus.

Somit schlägt das Beharren auf überholten konservativen und althergebrachten Denkmustern die Hüter des “Früher war alles besser” mit den eigenen Waffen. Innovationen und die Performance von Organisationen werden vermindert und gebremst, wenn sich keine demographisch-diversen Netzwerke in Unternehmensorganisationen ausbilden können.

Das wo ist hier die Verbindung zum PLM? Datensilos wollte PLM schon abbauen, als es noch CIM hieß. Über gemeinsame Datenmodelle, Product Data Backbones und Systemintegration wird in jedem Projekt ausgiebig diskutiert.

Und auch zum organisatorischen und arbeitskulturellen Wandel, der mit PLM einhergeht, wurde schon sehr viel geschrieben. Der geneigten Leserin und dem geneigten Leser möchte ich dazu den Blogartikel “Es wird menschlich – die Organisation rund um ihr PLM System” und das Interview mit Bernd Ebert an das Herz legen.

Wandel

Foto von Alexas Fotos via Pexels

Ebenso ist die Umsetzung und Begleitung dieses ein fester Bestandteil ein jeder PLM Initiative. Das reicht von der intensiven Projektkommunikation über die Einbindung von Key Usern und Stakeholdern bis hin zu vielfältigen Trainingsmaßnahmen.

Martin Eigner bringt es auf den Punkt: “Jeder PLM Anwendungsfall verlangt nach einer individuellen Lösung. Technik, Organisation und Menschen müssen gleichwertig eingebunden werden“. Ich nicke zustimmend und möchte das “Organisation” und “Menschen” betonen.

Mit der Lektüre dieser Studie hat sich mein Mindset definitv erweitert. Diversität wirkt in Unternehmensorganisationen als erfolgsverstärkender Faktor und das hat definitiv einen Einfluss auf erfolgreiche PLM Projekte.

Es gibt Beispiele dafür, die in diesen Aspekt auf der Agenda haben, Initiativen starten und handeln. Stellvertretend sei auf das LEAD Network verweisen, auf das ich durch meinen Fellow Mick Broekhof aufmerksam wurde.

Diesen spannenden Gedankenanstoss möchte ich mit der Community teilen. Und er hat mich zum Nachdenken gebracht. Man soll ja immer zuerst vor der eigenen Tür kehren. Wenn wir uns in der PLM Branche umschauen, wie divers sind wir eigentlich?